A Machine-Learning Strategy to Detect Mura Defects in a Low-Contrast Image by Piecewise Gamma Correction

Author:

Lin Zo-Han1,Lai Qi-Yuan1ORCID,Li Hung-Yuan1ORCID

Affiliation:

1. Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82445, Taiwan

Abstract

A detection and classification machine-learning model to inspect Thin Film Transistor Liquid Crystal Display (TFT-LCD) Mura is proposed in this study. To improve the capability of the machine-learning model to inspect panels’ low-contrast grayscale images, piecewise gamma correction and a Selective Search algorithm are applied to detect and optimize the feature regions based on the Semiconductor Equipment and Materials International Mura (SEMU) specifications. In this process, matching the segment proportions to gamma values of piecewise gamma is a task that involves derivative-free optimization which is trained by adaptive particle swarm optimization. The detection accuracy rate (DAR) is approximately 93.75%. An enhanced convolutional neural network model is then applied to classify the Mura type through using the Taguchi experimental design method that identifies the optimal combination of the convolution kernel and the maximum pooling kernel sizes. A remarkable defect classification accuracy rate (CAR) of approximately 96.67% is ultimately achieved. The entire defect detection and classification process can be completed in about 3 milliseconds.

Publisher

MDPI AG

Reference35 articles.

1. Automatic detection of region-mura defect in TFT-LCD;Lee;IEICE Trans. Inf. Syst.,2004

2. Choi, K.N., Lee, J.Y., and Yoo, S.I. (2004). Vision Geometry XII 5300, SPIE.

3. Low-contrast surface inspection of mura defects in liquid crystal displays using optical flow-based motion analysis;Tsai;Mach. Vis. Appl.,2011

4. A mura detection method;Taniguchi;Pattern Recognit.,2006

5. LOG-filter-based inspection of cluster Mura and vertical-band Mura on liquid crystal displays;Chen;Mach. Vis. Appl. Ind. Inspect.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calibration Methods for High-Contrast Automotive Clusters;2024 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST);2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3