A Courier Service with Electric Bicycles in an Urban Area: The Case in Seoul

Author:

Lee Keyju,Chae JunjaeORCID,Kim Jinwoo

Abstract

Various factors must be considered when running a courier service in an urban area, because the infrastructure of a city differs from those in suburban or countryside areas. Of note, population density is higher, and vehicles encounter greater restrictions. Moreover, air pollution from fossil fuel combustion is more severe. As tailpipe emissions are becoming costly to both corporations and the environment, researchers are increasingly exploring more appealing transportation options. Electric bicycles have become an important mode of transportation in some countries in the past decade. Electric bicycles and automobiles have their respective merits and demerits when used to provide courier services. E-bikes in particular can ply their trade in densely packed areas that are off-limits to cars and trucks. This paper focuses on (1) developing a truck–bike mixture model to reduce operating costs for an existing truck-only service by replacing some of the trucks with bicycles, and (2) exploring the resulting effects in terms of reducing overall carbon emissions. Data from one of the major courier companies in South Korea were utilized. The problem was tackled as a heterogeneous fleet vehicle routing problem using simulated annealing because the actual size of the problem cannot be solved directly with a mathematical approach. The most effective fleet mix was found for the company’s case. Effects on operating costs and reduced emissions were analyzed for 15 different scenarios with varying demands and off-limits areas. Computational results revealed that the new model is viable from economic and sustainability standpoints. They indicated that costs decrease to varying degrees in all scenarios, and that carbon emissions also decrease by around 10% regardless of the selected scenario.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3