The Influence of Wind-Induced Response in Urban Trees on the Surrounding Flow Field

Author:

Ren Xinyi1,Zhang Guoyi1,Chen Zhonggou1,Zhu Junhao1

Affiliation:

1. Department of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China

Abstract

In recent years, cities have experienced frequent climate changes and deteriorating wind environments. Urban vegetation has become an important measure to improve local microclimates with its flexible configuration. Leaves and branches also reorient with the direction of wind, affecting the airflow through the tree. However, trees are usually considered as stationary porous media areas and are not influenced by wind speed in existing numerical simulation studies. Therefore, by considering the response of a tree under natural wind, this study established a fitted relationship between porosity and wind speed by measuring the porosity of trees at different wind speeds in the field. A numerical model of the wind response of the tree was developed, and the tree drag coefficient was changed using the additional source term method to verify the feasibility of the model by measuring the wind environment behind the tree. To understand the effect of the wind-induced response on the surrounding flow field and its variation pattern, the surrounding flow fields of stationary tree (T-S) and wind-induced tree (T-D) at different wind speeds were compared and analyzed. The effect of porosity and height-to-width ratio under the wind-induced response of trees on the wind environment were quantified. It was found that at different wind speeds, as the wind speed increases, the tree porosity gradually increases and the drag coefficient decreases accordingly. The effective shading distance after wind response was 2.4H, which was 0.3H less compared to vertically fixed trees. The minimum wind speed increased linearly with plant porosity, and the minimum wind speed occurrence location and wind speed recovery distance were linearly and negatively correlated with tree height-to-width ratio. Therefore, the flow field around the tree was simulated to provide references for guiding tree planting and mitigating urban wind environments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference45 articles.

1. Climate variability and floods in China—A review;Kundzewicz;Earth-Sci. Rev.,2020

2. Landscape design strategy of xi’an urban open space based on the wind environment optimization;Liu;Chin. Landsc. Archit.,2018

3. Review of research on trees’ wind resistance and effects on wind environment;Zhou;J. Nat. Disasters,2015

4. Zhang, X., Gu, R., Li, Y., and Li, H. (1997). The effect of green spaces in residential areas on their airborne bacteria levels. Chin. Landsc. Archit., 57–58.

5. Experimental research on correlation between microclimate element and human behavior and perception of residential landscape space in shanghai;Liu;Chin. Landsc. Archit.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3