Heterogenous Canopy in a Lagrangian-Stochastic Dispersion Model for Particulate Matter from Multiple Sources over the Haifa Bay Area

Author:

Fattal EyalORCID,David-Saroussi Hadas,Buchman Omri,Tas EranORCID,Klausner ZivORCID

Abstract

The Haifa Bay area (HBA) is a major metropolitan area in Israel, which consists of high volume transportation routes, major industrial complexes, and the largest international seaport in Israel. These, which lie relatively near densely populated residential areas, result in a multitude of air pollution sources, many of whose emissions are in the form of particulate matter (PM). Previous studies have associated exposure to such PM with adverse health effects. This potential consequence serves as the motivation for this study whose aim is to provide a realistic and detailed three-dimensional concentration field of PM, originating simultaneously from multiple sources. The IIBR in-house Lagrangian stochastic pollutant dispersion model (LSM) is suitable for this endeavor, as it describes the dispersion of a scalar by solving the velocity fluctuations in high Reynolds number flows. Moreover, the LSM was validated in urban field experiments, including in the HBA. However, due to the fact that the multiple urban sources reside within the canopy layer, it was necessary to integrate into the LSM a realistic canopy layer model that depicts the actual effect of the roughness elements’ drag on the flow and turbulent exchange of the urban morphology. This was achieved by an approach which treats the canopy as patches of porous media. The LSM was used to calculate the three-dimensional fields of PM10 and PM2.5 concentrations during the typical conditions of the two workday rush-hour periods. These were compared to three air quality monitoring stations located downstream of the PM sources in the HBA. The LSM predictions for PM2.5 satisfy all acceptance criteria. Regarding the PM10 predictions, the LSM results comply with three out of four acceptance criteria. The analysis of the calculated concentration fields has shown that the PM concentrations up to 105 m AGL exhibit a spatial pattern similar to the ground level. However, it decreases by a factor of two at 45 m AGL, while, at 105 m, the concentration values are close to the background concentrations.

Funder

Israeli Ministry of Environmental Protection

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3