Atmospheric Response to EEP during Geomagnetic Disturbances

Author:

Grankin Dmitry1,Mironova Irina1ORCID,Bazilevskaya Galina23ORCID,Rozanov Eugene14ORCID,Egorova Tatiana4

Affiliation:

1. Faculty of Physics, St. Petersburg State University, 199034 St. Petersburg, Russia

2. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia

3. Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU), 11991 Moscow, Russia

4. The Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, 7260 Davos, Switzerland

Abstract

Energetic electron precipitation (EEP) is associated with solar activity and space weather and plays an important role in the Earth’s polar atmosphere. Energetic electrons from the radiation belt precipitate into the atmosphere during geomagnetic disturbances and cause additional ionization rates in the polar middle atmosphere. These induced atmospheric ionization rates lead to the formation of radicals in ion-molecular reactions at the heights of the mesosphere and upper stratosphere with the formation of reactive compounds of odd nitrogen NOy and odd hydrogen HOx groups. These compounds are involved in catalytic reactions that destroy the ozone. In this paper, we present the calculation of atmospheric ionization rates during geomagnetic disturbances using reconstructed spectra of electron precipitation from balloon observations; estimation of ozone destruction during precipitation events using one-dimensional photochemical radiation-convective models, taking into account both parameterization and ion chemistry; as well as provide an estimation of electron density during these periods.

Funder

RSF

RFBR

the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3