Relationship between South China Sea Summer Monsoon and Western North Pacific Tropical Cyclones Linkages with the Interaction of Indo-Pacific Pattern

Author:

Liu Shengyuan123ORCID,Xu Jianjun23,Tu Shifei23ORCID,Zheng Meiying123,Chen Zhiqiang123

Affiliation:

1. College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

2. China Meteorological Administration-Guangdong Ocean University (CMA-GDOU) Joint Laboratory for Marine Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

3. South China Sea Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

The South China Sea (SCS) summer monsoon (SCSSM) and Western North Pacific tropical cyclones (TCs) are both tropical systems that interact with each other on multiple scales. This study examines the differences in TCs activity characteristics between anomalous strong and weak SCSSM years, and explores the possible mechanisms behind these differences through the coupling relationship between tropical atmospheric circulation and oceanic surface conditions. Results show that the destructiveness of TCs over the Western North Pacific is stronger during weak SCSSM years than in strong years, whereas the opposite occurs for TCs over the SCS. The interaction between the tropical Indo-Pacific ocean and atmosphere plays a key role in the relationship between SCSSM intensity and TCs activity. In strong (weak) SCSSM years, the sea surface temperature anomaly (SSTA) in the tropical Pacific Ocean tends to correspond to a La Niña-like (El Niño-like) distribution, whereas the tropical Indian Ocean shows an Indian Ocean dipole-negative (positive) phase distribution. Moreover, Walker circulations in both the Indian and Pacific Oceans are coupled during these years, which creates a seesaw-like relationship in the conditions for TCs formation between the SCS and the Western Pacific Ocean. During weak SCSSM years, the formation and activity of TCs over the SCS are suppressed due to the weakened water vapor transport caused by abnormal easterly winds from the eastern Indian Ocean to the southern SCS. Meanwhile, the higher SSTA in the Western Pacific Ocean enhances the TCs activity. In strong SCSSM years, the enhanced monsoon drives a stronger monsoon trough, improving the convective environment over the SCS, whereas in contrast, the Western Pacific Ocean is covered by colder water, resulting in poorer conditions for TCs genesis.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3