Towards a UK Airborne Bioaerosol Climatology: Real-Time Monitoring Strategies for High Time Resolution Bioaerosol Classification and Quantification

Author:

Crawford Ian1ORCID,Bower Keith1,Topping David1,Di Piazza Simone2ORCID,Massabò Dario3ORCID,Vernocchi Virginia4ORCID,Gallagher Martin1ORCID

Affiliation:

1. Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK

2. Laboratory of Mycology, Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genoa, Italy

3. Department of Physics, University of Genova, INFN-Division of Genova, 16146 Genoa, Italy

4. National Institute of Nuclear Physics (INFN)-Division of Genova, 16146 Genoa, Italy

Abstract

Biological particulate matter (BioPM) is a poorly constrained, ubiquitous, and diverse subset of atmospheric aerosols. They influence climate, air quality, and health via many mechanisms, spurring renewed interest in constraining their emissions to elucidate their impacts. In order to build the framework required to assess the role of BioPM in these multidisciplinary areas, it is necessary to develop robust, high time-resolution detection methodologies so that BioPM emissions can be understood and characterized. In this study, we present ambient results from intensive monitoring at UK peri-urban and coastal ground sites using high time-resolution real-time bioaerosol spectrometers. We demonstrate the utility of a new dimensional reduction-driven BioPM classification scheme, where laboratory sample training data collected at the ChAMBRe facility were used to generate broad taxonomic class time series data of key species of interest. We show the general trends of these representative classes, spanning spring, early summer, and autumn periods between 2019 and 2021. Diurnal behaviors and meteorological relationships were investigated and contextualized; a key result arising from this study was the demonstration of rainfall-induced enhancement of nighttime Penicillium-like aerosol, where rainfall crucially only acts to enhance the quantity emitted without significantly influencing the early morning timing of peak spore liberation.

Funder

NERC BIOARC programme

European Commission under the Horizon 2020—Research and Innovation Framework Programme

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3