The Impacts of the Application of the Ensemble Optimal Interpolation Method in Global Ocean Wave Data Assimilation

Author:

Wu Mengmeng123,Wang Hui23,Wan Liying23,Wang Juanjuan23,Wang Yi23,Wang Jiuke23ORCID

Affiliation:

1. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China

2. National Marine Environmental Forecasting Center, Beijing 100081, China

3. Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Ministry of Natural Resources, Beijing 100081, China

Abstract

The ensemble optimal interpolation method was used in this study to conduct an examination of the assimilations of significant wave height (SWH) data from HY-2A satellite altimeter based on the WAVEWATCH III global ocean wave model. The results suggested that the ensemble optimal interpolation method using HY-2A SWH data played a positive role in enhancing the accuracy of the global ocean wave simulations and could effectively improve the deviations of SWH in the simulation processes. The root mean square errors of the NDBC buoy inspections were improved by 7 to 44% after the assimilation, and those of China’s offshore buoy inspections were improved by 3 to 11% after the assimilation. It was observed that the farther the buoys were from the shore, the better the effects of the assimilation improvements. The root mean square errors of the Jason-2 satellite data validations were improved by 17% after the assimilation, with monthly improvements of 8–25%. The improvements occurred in most of the global oceans, particularly in the Southern Ocean, the Eastern Pacific Ocean and the Indian Ocean. The results obtained in this research can be used as a reference for the operational applications of China’s ocean satellite data in ocean wave data assimilation and prediction.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3