Three-Dimensional Visualization of Long-Range Atmospheric Transport of Crop Pathogens and Insect Pests

Author:

Meyer Marcel12ORCID,Thurston William3ORCID,Smith Jacob W.4ORCID,Schumacher Alan1,Millington Sarah C.3ORCID,Hodson David P.5,Cressman Keith6,Gilligan Christopher A.4ORCID

Affiliation:

1. Visual Data Analysis Group, Regional Computing Centre, Universität Hamburg, 20146 Hamburg, Germany

2. Center for International Peace Operations (ZIF), 10719 Berlin, Germany

3. Atmospheric Dispersion and Air Quality Group, UK Met Office, Exeter EX1 3PB, UK

4. Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK

5. International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Mexico

6. Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy

Abstract

Some of the most devastating crop diseases and insect pests can be transmitted by wind over extremely long distances. These low-probability but high-impact events can have severe consequences for crop production and food security by causing epidemic outbreaks or devastating insect infestations in previously uninfected geographic areas. Two prominent examples that have recently caused substantial damage to agricultural production are novel strains of wheat rusts and desert locust swarm infestations. Whilst quantitative estimates of long-range atmospheric transport events can be obtained using meteorological transport simulations, the exact characteristics of three-dimensional spatiotemporal dynamics of crop pathogen transport and insect flight on extremely large spatial scales, over entire regions and continents, remain largely unknown. Here, we investigate the feasibility and usefulness of new advanced geospatial data visualization methods for studying extremely long-distance airborne transmission of crop pathogens and insect pests. We combine field surveillance data and a Lagrangian Particle Dispersion Model with novel techniques from computer graphics to obtain, for the first time, detailed three-dimensional visual insights into airborne crop pathogen and insect pest transport on regional and continental scales. Visual insights into long-distance dispersal of pests and pathogens are presented as a series of short 3D movies. We use interactive three-dimensional visual data analysis for explorative examination of long-range atmospheric transport events from a selection of outbreak and infestation sites in East Africa and South East Asia. The practical usefulness of advanced 3D visualization methods for improving risk estimates and early warning is discussed in the context of two operational crop disease and insect pest management systems (for wheat rusts and desert locusts). The tools and methods introduced here can be applied to other pathogens, pests, and geographical areas and can improve understanding of risks posed to agricultural production by crop disease and insect pest transmission caused by meteorological extreme events.

Funder

Deutsche Forschungsgemeinschaft

University of Cambridge

UK Foreign, Commonwealth and Development Office

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3