Ground-Based MAX-DOAS Observation of Trace Gases from 2019 to 2021 in Huaibei, China

Author:

Mou Fusheng12,Luo Jing12,Zhang Qijin12,Zhou Chuang12,Wang Song12,Ye Fan12,Li Suwen12,Sun Youwen3

Affiliation:

1. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China

2. Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei 235000, China

3. Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

Abstract

With the spread of the COVID-19 pandemic and the implementation of closure measures in 2020, population mobility and human activities have decreased, which has seriously impacted atmospheric quality. Huaibei City is an important coal and chemical production base in East China, which faces increasing environmental problems. The impact of anthropogenic activities on air quality in this area was investigated by comparing the COVID-19 lockdown in 2020 with the normal situation in 2021. Tropospheric NO2, HCHO and SO2 column densities were observed by ground-based multiple axis differential optical absorption spectroscopy (MAX-DOAS). In situ measurements for PM2.5, NO2, SO2 and O3 were also taken. The observation period was divided into four phases, the pre-lockdown period, phase 1 lockdown, phase 2 lockdown and the post-lockdown period. Ground-based MAX-DOAS results showed that tropospheric NO2, HCHO and SO2 column densities increased by 41, 14 and 14%, respectively, during phase 1 in 2021 vs. 2020. In situ results showed that NO2 and SO2 increased by 59 and 11%, respectively, during phase 1 in 2021 vs. 2020, but PM2.5 and O3 decreased by 15 and 17%, respectively. In the phase 2 period, due to the partial lifting of control measures, the concentration of pollutants did not significantly change. The weekly MAX-DOAS results showed that there was no obvious weekend effect of pollutants in the Huaibei area, and NO2, HCHO and SO2 had obvious diurnal variation characteristics. In addition, the relationship between the column densities and wind speed and direction in 2020 and 2021 was studied. The results showed that, in the absence of traffic control in 2021, elevated sources in the Eastern part of the city emitted large amounts of NO2. The observed ratios of HCHO to NO2 suggested that tropospheric ozone production involved NOX-limited scenarios. The correlation analysis between HCHO and different gases showed that HCHO mainly originated from primary emission sources related to SO2.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

he Youth Innovation Promotion Association

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3