Removal and Resource Utilization of High Concentration Flue Gas Sulfur Dioxide Using Manganese Carbonate Ore

Author:

Tang Zhaotong12,Wang Yuchen1234,Liu Jie1234,Xu Bo1234,Ding Lin1,Huang Wenfeng1234,Dai Zhongde134,Jiang Wenju134,Yao Lu134,Yang Lin134ORCID

Affiliation:

1. College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China

2. College of Architecture and Environment, Sichuan University, Chengdu 610065, China

3. National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu 610065, China

4. Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China

Abstract

The removal of high concentration flue gas sulfur dioxide (SO2) using manganese carbonate ore desulfurization (MCO-FGD) is a promising route that combines economic benefits and pollution control. However, the problems of intermediate oxidation and by-product control have plagued the industrial application of the MCO-FGD technique for a long time. Based on the fact that there is symbiosis of manganese and iron in natural manganese ore, in this study, small amounts of Fe(III) and MnO2 were introduced into the MCO-FGD reaction system to enhance the oxidation of SO2 to SO4− and suppress the manganous dithionate (MnS2O6) by-product generation. The results suggested that the addition of Fe(III) led to the generation of potent oxidant Mn(III) in the reaction system, which accelerated the generation of SO3−• radicals and, thus, enhanced the oxidation of SO2. Under the optimum reaction conditions, the 2.0% of inlet SO2 could be removed to 62 ppm, obtaining 90.1% manganese leaching efficiency, and the concentration of MnS2O6 in the desulfurized liquid was kept below 2.5 g/L after a six-stage desulfurization. The results are of great importance for the sustainable development of the manganese metallurgical industry, which provides theoretical and technical support for the recycling of sulfur and manganese. The influences of different operational conditions on SO2 removal, the catalytic mechanism, and manganese leaching were studied to provide theoretical and technical support for resourceful MCO-FGD technology.

Funder

Sichuan Science and Technology Plan Project

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3