Affiliation:
1. School of Software Engineering, Tongji University, Shanghai 201804, China
Abstract
The North Atlantic Oscillation (NAO) is a major climatic phenomenon in the Northern Hemisphere, but the underlying air–sea interaction and physical mechanisms remain elusive. Despite successful short-term forecasts using physics-based numerical models, longer-term forecasts of NAO continue to pose a challenge. In this study, we employ advanced data-driven causal discovery techniques to explore the causality between multiple ocean–atmosphere processes and NAO. We identify the best NAO predictors based on this causality analysis and develop NAO-MCD, a multivariate air–sea coupled model that incorporates causal discovery to provide 1–6 month lead seasonal forecasts of NAO. Our results demonstrate that the selected predictors are strongly associated with NAO development, enabling accurate forecasts of NAO. NAO-MCD significantly outperforms conventional numerical models and provides reliable seasonal forecasts of NAO, particularly for winter events. Moreover, our model extends the range of accurate forecasts, surpassing state-of-the-art performance at 2- to 6-month lead-time NAO forecasts, substantially outperforming conventional numerical models.
Funder
Meteorological Joint Funds of the National Natural Science Foundation of China
The Key Project Fund of Shanghai 2020
The National Key Research and Development Program of China
The National Natural Science Foundation of China
Tongji University
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献