A Metamodel-Based Optimization of Physical Parameters of High Resolution NWP ICON-LAM over Southern Italy

Author:

Cinquegrana Davide1ORCID,Zollo Alessandra Lucia1ORCID,Montesarchio Myriam1ORCID,Bucchignani Edoardo1ORCID

Affiliation:

1. Meteorology Lab, Centro Italiano Ricerche Aerospaziali (CIRA), Via Maiorise, 81043 Capua, CE, Italy

Abstract

This work represents a first step in the definition of a framework aimed at finding, by means of efficient global optimization based on metamodels, an optimal configuration of physical parameters for the ICON (ICOsahedral Nonhydrostatic) Limited Area Mode at high resolution (about 1.1 km) over Southern Italy, to be used for operational runs. The objective of the optimization is to reduce the distance between observed meteorological variables and modeled data. This distance is measured by an opportunely designed objective function. This work represents a preparatory step, since the input parameters considered are only a reduced number with respect to the huge amount of parameters potentially involved. First, domain size sensitivity was performed to choose the optimal domain. Then, the optimization was conducted by means of an Efficient Global Optimization algorithm relying on a Gaussian-based metamodel. The four parameters considered control the heat transfer in the turbulent layer, the laminar resistance and the snow vertical velocity. They were optimized over a week in November 2018, a period characterized by extreme events in the region considered. The results demonstrated the effectiveness of the proposed approach, reducing the distance from observed data, and the method can be considered promising from the perspective taking into account a larger set of physical parameters, and validation over a wider time-window.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3