A Hybrid Deep Learning Model for Air Quality Prediction Based on the Time–Frequency Domain Relationship

Author:

Xu Rui1,Wang Deke1,Li Jian1,Wan Hang23,Shen Shiming1,Guo Xin1

Affiliation:

1. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

3. Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Deep learning models have been widely used in time-series numerical prediction of atmospheric environmental quality. The fundamental feature of this application is to discover the correlation between influencing factors and target parameters through a deep network structure. These relationships in original data are affected by several different frequency factors. If the deep network is adopted without guidance, these correlations may be masked by entangled multifrequency data, which will cause the problem of insufficient correlation feature extraction and difficult model interpretation. Because the wavelet transform has the ability to separate these entangled multifrequency data, and these correlations can be extracted by deep learning methods, a hybrid model combining wavelet transform and transformer-like (WTformer) was designed to extract time–frequency domain features and prediction of air quality. The 2018–2021 hourly data in Guilin was used as the benchmark training dataset. Pollutants and meteorological variables in the local dataset are decomposed into five frequency bands by wavelet. The analysis of the WTformer model showed that particulate matter (PM2.5 and PM10) had an obvious correlation in the low-frequency band and a low correlation in the high-frequency band. PM2.5 and temperature had a negative correlation in the high-frequency band and an obvious positive correlation in the low-frequency band. PM2.5 and wind speed had a low correlation in the high-frequency band and an obvious negative correlation in the low-frequency band. These results showed that the laws of variables in the time–frequency domain could be found by the model, which made it possible to explain the model. The experimental results show that the prediction performance of the established model was better than that of multilayer perceptron (MLP), one-dimensional convolutional neural network (1D-CNN), gate recurrent unit (GRU), long short-term memory (LSTM) and Transformer, in all time steps (1, 4, 8, 24 and 48 h).

Funder

Guangxi Natural Science Foundation

Guangxi Key Research and Development Program

National Natural Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3