Mechanical Response of a Buried Pipeline to Permafrost Thawing Based on Sequential Coupling Method

Author:

Wang Fei123,Wu Gang234ORCID,Chen Dun23ORCID,Li Guoyu234ORCID,Qian Yulong1,Xi Feilong1,Wang Ling1

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China

2. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. Da Xing’anling Observation and Research Station of Frozen-Ground Engineering and Environment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Jagdaqi 165000, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Thawing permafrost has affected the structural integrity of buried warm pipelines in cold regions and poses an ongoing threat in the context of climate change. Therefore, characterizing variation in the engineering properties of pipeline foundation permafrost and its effect on the mechanical behavior of pipeline is important. In this paper, the ground temperature distributions around a buried warm pipeline and mechanical response of the pipeline to differential thaw settlement of foundation permafrost are investigated using thermal–mechanical sequential coupling simulation, based on the observational data collected from a selected monitoring site along the China-Russia crude oil pipelines in northeastern China. The results indicate that the thaw-induced settlement of pipeline foundation permafrost develops quickly with the formation and expansion of the thaw bulb in the first 10 years, and then increases slowly when the thaw bulb extends to the weathered granite. Differential thaw settlement will cause a significant change in the deformation and stress of the pipeline near the interface of strong and weak thaw settlement zones. When the length ratio of strong and weak thaw settlement zones is 1, the maximum stress of the pipeline with a thickness of 16 mm is approximately 45% of the allowable stress of X65 steel, and the pipeline remains safe for 30 years. However, the potential failure of the pipeline should be considered due to the continued ground thawing and warming and pipe material aging. Forthcoming research on this topic is needed to evaluate more carefully the structural integrity of buried pipelines in cold regions.

Funder

National Natural Science Foundation of China

Research Projects of the State Key Laboratory of Frozen Soil Engineering

Educational Commis-sion of Jiangsu Province of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3