Formation Mechanisms of the “5·31” Record-Breaking Extreme Heavy Rainfall Process in South China in 2021

Author:

Chen Fangli1,Li Huiqi23,Hu Sheng23,Jiang Shuai14,Li Jiaojiao14,Wu Ruoting1

Affiliation:

1. Huizhou Meteorological Bureau, Huizhou 516001, China

2. Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510641, China

3. China Meteorological Administration Tornado Key Laboratory, Guangzhou 510641, China

4. Huizhou Emergency Early Warning Information Release Center of Guangdong Province, Huizhou 516001, China

Abstract

Based on the fifth-generation European Center for Medium-Range Weather Forecasts reanalysis data (ERA5), the real-time observation data from weather stations, and the radar products in Guangdong Province, we analyze the precipitation properties and formation mechanisms of the “5·31” extreme heavy rainfall process with record-breaking 3-h accumulated rainfall in South China during 2021. The results show that the extreme heavy rainfall process is caused by the joint actions of weather systems such as a weak upper-level short-wave trough, a surface stationary front, and a low-level southwesterly jet. Before the heavy precipitation process, there is large precipitable water content and deep warm clouds, which provides a potential for the occurrence and development of the heavy rainfall process in Longhua Town of Longmen County and its surrounding areas. Simultaneously, the low-level southwesterly jet provides abundant warm-wet water vapor for the heavy rainfall area. The vertical atmospheric environmental conditions, such as strong horizontal temperature gradient, high convective available potential energy, high-temperature difference between 850 hPa and 500 hPa, and low convective inhibition, maintain for a long duration in the heavy rainfall area, which are favorable for the occurrence and development of high-efficiency convective precipitation caused by water vapor condensation due to the uplift of low-level warm-wet airflows. The combined effects of the enhanced low-level southwesterly airflow, the stationary front, the mesoscale surface convergence line generated by cold pool outflows, the terrain influence, and the train effect of the precipitation echoes make heavy precipitation near Longhua last longer and stronger than other areas, leading to the extreme heavy rainfall with the record-breaking 3-h accumulated rainfall in Longhua.

Funder

National Natural Science Foundation of China

Science and Technology Development Fund Project of Guangdong Meteorological Bureau

Guangdong Basic and Applied Basic Research Foundation

Joint Research Project for Meteorological Capacity Improvement

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3