Affiliation:
1. Gund Institute for Environment, University of Vermont, Burlington, VT 05405, USA
2. Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
Abstract
Heat waves are becoming more frequent due to climate change. Summer heat waves can be particularly deadly in cities, where temperatures are already inflated by abundant impervious, dark surfaces (i.e., the heat island effect). Urban heat waves might be ameliorated by planting and maintaining urban forests. Previous observational research has suggested that conifers may be particularly effective in cooling cities. However, the observational nature of these studies has prevented the identification of the direct and indirect mechanisms that drive this differential cooling. Here, we develop a systems dynamics representation of urban forests to model the effects of the percentage cover of either conifers or broadleaf trees on temperature. Our model includes physiological and morphological differences between conifers and broadleaf trees, and physical feedback among temperature and energy fluxes. We apply the model to a case study of Vancouver, BC, Canada. Our model suggests that in temperate rainforest cities, conifers may by 1.0 °C cooler than broadleaf trees; this differential increases to 1.2 °C when percentage tree cover increases from 17% to 22% and to 1.7 °C at 30% cover. Our model suggests that these differences are due to three key tree traits: leaf area index, leaf boundary layer resistance, and dry mass per leaf area. Creating urban forests that optimize these three variables may not only sequester CO2 to mitigate global climate change but also be most effective at locally minimizing deadly urban heat waves.
Funder
Gund Postdoctoral Fellowship
Environment and Climate Change Canada
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference76 articles.
1. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes;Fischer;Nat. Clim. Chang.,2015
2. Air Quality in Selected Megacities;Molina;J. Air Waste Manag. Assoc.,2004
3. Urban heat island dynamics in Montreal and Vancouver;Oke;Atmos. Environ. (1967),1975
4. Surface Urban Heat Island Across 419 Global Big Cities;Peng;Environ. Sci. Technol.,2011
5. Kong, J., Zhao, Y., Carmeliet, J., and Lei, C. (2021). Urban heat island and its interaction with heatwaves: A review of studies on mesoscale. Sustainability, 13.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献