Preparation of Metal Amalgam Electrodes and Their Selective Electrocatalytic CO2 Reduction for Formate Production

Author:

Abbas Syed Asad,Kim Seong-Hoon,Saleem Hamza,Ahn Sung-Hee,Jung Kwang-DeogORCID

Abstract

Electrochemical CO2 reduction to produce formate ions has studied for the sustainable carbon cycle. Mercury in the liquid state is known to be an active metallic component to selectively convert CO2 to formate ions, but it is not scalable to use as an electrode in electrochemical CO2 reduction. Therefore, scalable amalgam electrodes with different base metals are tested to produce formate by an electrochemical CO2 reduction. The amalgam electrodes are prepared by the electrodeposition of Hg on the pre-electrodeposited Pd, Au, Pt and Cu nanoparticles on the glassy carbon. The formate faradaic efficiency with the Pd, Au, Pt and Cu is lower than 25%, while the one with the respective metal amalgams is higher than 50%. Pd amalgam among the tested samples shows the highest formate faradic efficiency and current density. The formate faradaic efficiency is recorded 85% at −2.1 V vs SCE and the formate current density is −6.9 mA cm−2. It is concluded that Pd2Hg5 alloy on the Pd amalgam electrode is an active phase for formate production in the electrochemical CO2 reduction.

Funder

Korea Carbon Capture and Sequestration R and D Center

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3