Optimization of Ultrahigh-Throughput Screening Assay for Protein Engineering of d-Allulose 3-Epimerase

Author:

Liu Zhanzhi,Liu Shuhan,Jia Jingyi,Wang Liuxin,Wang Feng,Pan Xiaoyue,Wu Jing,Chen Sheng

Abstract

d-Allulose is the corresponding epimer of d-fructose at the C-3 position, which exhibits a similar taste and sweetness to sucrose. As a low-calorie sweetener, d-allulose has broad application prospects in the fields of medicine, food, and so on. Currently, the production method of d-allulose is mainly the enzymatic conversion of d-fructose by d-allulose 3-epimerase (DAEase). However, the limited specific activity and thermal stability of DAEase restrict its industrial application. Herein, an ultrahigh-throughput screening assay based on the transcription factor PsiR was extensively optimized from the aspects of culture medium components, screening plasmid, and expression host, which enhanced the correction between the fluorescent readout and the enzyme activity. Then, the error-prone PCR (epPCR) library of Clostridium cellulolyticum H10 DAEase (CcDAEase) was screened through the above optimized method, and the variant I228V with improved specific activity and thermal stability was obtained. Moreover, after combining two beneficial substitutions, D281G and C289R, which were previously obtained by this optimized assay, the specific activity of the triple-mutation variant I228V/D281G/C289R reached up to 1.42-fold of the wild type (WT), while its half-life (T1/2) at 60 °C was prolonged by 62.97-fold. The results confirmed the feasibility of the optimized screening assay as a powerful tool for the directed evolution of DAEase.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3