PGA: A New Hybrid PSO and GA Method for Task Scheduling with Deadline Constraints in Distributed Computing

Author:

Shao Kaili1,Song Ying23,Wang Bo4ORCID

Affiliation:

1. Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou 450003, China

2. Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100083, China

3. Beijing Key Laboratory of Internet Culture and Digital Dissemination, Beijing Information Science and Technology University, Beijing 100029, China

4. Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450001, China

Abstract

Distributed computing, e.g., cluster and cloud computing, has been applied in almost all areas for data processing, while high resource efficiency and user satisfaction are still the ambition of distributed computing. Task scheduling is indispensable for achieving the goal. As the task scheduling problem is NP-hard, heuristics and meta-heuristics are frequently applied. Every method has its own advantages and limitations. Thus, in this paper, we designed a hybrid heuristic task scheduling problem by exploiting the high global search ability of the Genetic Algorithm (GA) and the fast convergence of Particle Swarm Optimization (PSO). Different from existing hybrid heuristic approaches that simply sequentially perform two or more algorithms, the PGA applies the evolutionary method of a GA and integrates self- and social cognitions into the evolution. We conduct extensive simulated environments for the performance evaluation, where simulation parameters are set referring to some recent related works. Experimental results show that the PGA has 27.9–65.4% and 33.8–69.6% better performance than several recent works, on average, in user satisfaction and resource efficiency, respectively.

Funder

key scientific and technological projects of Henan Province

National Natural Science Foundation of China

Beijing Key Laboratory of Internet Culture and Digital Dissemination Research

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3