Abstract
Boron arsenate, BAsO4, is a β-cristobalite-like crystal which has been reported to exhibit the rather unusual property of negative linear compressibility behaviour at elevated pressures, that is expanding rather than shrinking in a linear dimension when subjected to pressure. This work proposes a ‘geometry—deformation mechanism’-based mathematical model to aid the discernment of the manner how this anomalous pressure behaviour is achieved. The model makes use of data obtained from DFT simulations over an extended range of pressures, including extreme pressure conditions, and rigorously explains the macroscopic properties of this material in terms of the nanoscale deformations. More specifically, through this model, it was possible to decipher the different contributions to the deformation mechanism and compressibility properties of BAsO4. Moreover, for the first time, it was shown that a rule related to the sum of angles of tetrahedrally coordinated atoms is so robust that it applies at the extreme pressures studied here.
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献