Ceramic Scaffolds for Bone Augmentation: Design and Characterization with SEM and Confocal Microscopy

Author:

Gabor Alin GabrielORCID,Duma Virgil-FlorinORCID,Fabricky Mihai M. C.,Marsavina Liviu,Tudor AncaORCID,Vancea Cosmin,Negrea Petru,Sinescu CosminORCID

Abstract

Bone scaffolds must fulfil numerous and sometimes contradictory characteristics: biocompatibility, bioactivity, high porosity, and appropriate mechanical strength. To tackle some of these issues, this study has several aims for the development of such scaffolds for dentistry applications: (i) to utilize appropriate materials (ceramics and sponges) and to introduce a novel, potentially performant ceramic material; (ii) to characterize the obtained scaffolds by using a range of methods; (iii) to compare and to correlate the assessment results with the scope to validate them reciprocally. There are two commercially available dental ceramics (i.e., Ceramco iC Natural Enamel (E) and Ceramco iC Natural Dentine (D), (DeguDent GmbH, Hanau-Wolfgang, Deutschland)) that are considered, as well as a new-developed porcelain (ceramic C). To obtain porous structures of scaffolds, each ceramic is introduced in two different sponges: a denser one, green (G) and a less dense one, blue (B). A total of 60 samples are manufactured and divided in six study groups, obtained by combining the above materials: GE, BE, GD, BD, GC, and BC (where the first letter represents the sponge type and the second one the utilized ceramic). Several methods are applied to characterize their chemical composition, as well as their macro- and micro-porosity: X-ray Diffraction (XRD), apparent porosity measurements, scanning electronic microscopy (SEM), and confocal microscopy (CM). The latter two methods image the inner (porous) and the outer/cortical (denser) areas of the samples. The results show a good porosity (i.e., dimensions and uniformity of pores) of around 65% for the final group BC, with satisfactory values of around 51% for BD and GC. A certain correlation is made between SEM, CM, and the apparent porosity results. The biocompatibility of the new ceramic C is demonstrated. Finally, a necessary trade-off is made with the mechanical strength of the obtained scaffolds, which was also evaluated. From this point of view, Group BD has the highest compressive strength of around 4 MPa, while Group BC comes second, with around 2 MPa. This trade-off between porosity and mechanical strength suggests a choice between Groups BC and BD, which are the best with regard to the porosity and mechanical strength criterium, respectively.

Funder

Romanian Ministry of Research, Innovation and Digitization

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3