Optical Remote Sensing Indexes of Soil Moisture: Evaluation and Improvement Based on Aircraft Experiment Observations

Author:

Sun HaoORCID,Liu Hao,Ma Yanhui,Xia Qunbo

Abstract

Optical remote sensing (about 0.4~2.0 μm) indexes of soil moisture (SM) are valuable for some specific applications such as monitoring agricultural drought and downscaling microwave SM, due to their abundant data sources, higher spatial resolution, and easy-to-use features, etc. In this study, we evaluated thirteen typical optical SM indexes with aircraft and in situ observed SM from two field campaigns, the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) and 2016 (SMAPVEX16) conducted in Manitoba, Canada. MODIS surface reflectance products (MOD09A1) and Sentinel-2 multispectral imager Level-1C data were utilized to calculate the optical SM indexes. The evaluation results demonstrated that (1) the Visible and Shortwave Infrared Drought Index (VSDI) and Optical TRApezoid Model (OPTRAM) outperform the other eleven optical SM indexes as compared with aircraft and in situ observed SM. They also presented well consistence in temporal variation with the in situ observed SM. (2) The VSDI achieved comparable performance with the OPTRAM while the former has very simple calculation expression and the latter requires complex process to determine the dry and wet boundaries. (3) Both the VSDI and OPTRAM utilize two sensitive bands of soil and vegetation moisture, i.e., Red and SWIR bands, whereas the other eleven SM indexes only employ one sensitive band. This may be the main reason of the evaluation results. (4) Based on this recognition, improvements of the VSDI and OPTRAM were created and validated in this study through adding more sensitive band to VSDI and combining NDVI and modified VSDI into a new feature space for calculating the optical SM index as with OPTRAM. The results are conducive to selecting and utilizing the current numerous optical SM indexes for SM and drought monitoring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3