Huff-n-Puff Experimental Studies of CO2 with Heavy Oil

Author:

Shilov EvgenyORCID,Cheremisin AlexeyORCID,Maksakov Kirill,Kharlanov Sergey

Abstract

This work is devoted to CO2 Huff-n-Puff studies on heavy oil. Oil recovery for heavy oil reservoirs is sufficiently small in comparison with conventional reservoirs, and, due to the physical limitation of oil flow through porous media, a strong need for better understanding of tertiary recovery mechanisms of heavy oil exists. Notwithstanding that the idea of Huff-n-Puff gas injection technology for enhanced oil recovery has existed for dozens of years, there is still no any precise methodology for evaluating the applicability and efficiency of this technology in heavy oil reservoirs. Oil recovery factor is a question of vital importance for heavy oil reservoirs. In this work, we repeated Huff-n-Puff tests more than three times at five distinct pressure points to evaluate the applicability and efficiency of CO2 Huff-n-Puff injection to the heavy oil reservoirs. Additionally, the most critical factor that affects oil recovery in gas injection operation is the condition of miscibility. Experimental data allowed to distinguish the mixing zone of the light fractions of studied heavy oil samples. The experimental results showed that the pressure increase in the Huff-n-Puff injection process does not affect the oil recovery when the injection pressure stays between miscibility pressure of light components of oil and minimum miscibility pressure. It was detected that permeability decreases after Huff-n-Puff CO2 tests.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. World Energy Outlook 2018

2. BP Statistical Review of World Energy 2019,2019

3. Unconventional and Conventional Oil Production Impacts on Oil Price - Lessons Learnt with Glance to the Future

4. Highlighting Heavy Oil;Alboudwarej;Oilfield Rev.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3