Abstract
Functional multiwall carbon nanotubes (f-MWCNTs) are of significant interest due to their dispersion ability in the aqueous phase and potential application in environmental, nanotechnology, and biological fields. Herein, we functionalized MWCNTs by a simple acid treatment under ultra-sonification, which represented a terminal or side-functional improvement for the fabrication of a toxic lead ion sensor. The f-MWCNTs were characterized in detail by XRD, Raman, XPS, BET, UV/vis, FTIR, and FESEM-coupled XEDS techniques. The analytical performance of the f-MWCNTs was studied for the selective detection of toxic lead ions by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of the f-MWCNTs was evaluated using several metal ions such as Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Ni2+, Pb2+, and Zn2+ ions. Lastly, the newly designed ionic sensor was successfully employed to selectively detect lead ions in several environmental water samples with reasonable results. This approach introduced a new technique for the selective detection of heavy metal ions using functional carbon nanotubes with ICP-OES for the safety of environmental and healthcare fields on a broad scale.
Funder
Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah,
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献