Abstract
The study of vegetation phenology has great relevance in many fields since the importance of knowing timing and shifts in periodic plant life cycle events to face the consequences of global changes in issues such as crop production, forest management, ecosystem disturbances, and human health. The availability of high spatial resolution and dense revisit time satellite observations, such as Sentinel-2 satellites, allows high resolution phenological metrics to be estimated, able to provide key information from time series and to discriminate vegetation typologies. This paper presents an automated and transferable procedure that combines validated methodologies based on local curve fitting and local derivatives to exploit full satellite Earth observation time series to produce information about plant phenology. Multivariate statistical analysis is performed for the purpose of demonstrating the capacity of the generated smoothed vegetation curve, temporal statistics, and phenological metrics to serve as temporal discriminants to detect forest ecosystems processes responses to environmental gradients. The results show smoothed vegetation curve and temporal statistics able to highlight seasonal gradient and leaf type characteristics to discriminate forest types, with additional information about forest and leaf productivity provided by temporal statistics analysis. Furthermore, temporal, altitudinal, and latitudinal gradients are obtained from phenological metrics analysis, which also allows to associate temporal gradient with specific phenophases that support forest types distinction. This study highlights the importance of integrated data and methodologies to support the processes of vegetation recognition and monitoring activities.
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献