Spatiotemporal Variations in Satellite-Derived Vegetation Phenological Parameters in Northeast China

Author:

Guo JintingORCID,Hu Yuanman

Abstract

Vegetation phenology does not only serve as a key index of terrestrial ecosystem response to worldwide climate change but also has a major influence on plant productivity and the carbon cycle. In the current research, the change of vegetation phenological parameters was studied and the impact exerted by climate change on phenological phases in northeast China for 1982–2014 was explored using the latest edition of the Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS NDVI3g) dataset. The results showed that the start of the growing season (SOS) slightly advanced, the end of the growing season (EOS) showed a significant delay, and the length of the growing season (LOS) exhibited a significant prolonging at the regional scale. At the different vegetation types scale, there existed diverse responses of vegetation phenological phases to climate change for forest, grassland, and cultivated land. Significant decreasing trends in the SOS occupied 19.1% of the entire research area, whereas pixels with significantly increasing trends in the SOS accounted for 13.1%. The EOS was delayed in most of the study region (approximately 72.1%). As the result of the variations of SOS and EOS, the LOS was obviously enhanced (p < 0.05) in 29.7% of the research area. According to the correlation of vegetation phenology with climate factors, the SOS had a significant negative relationship with the average temperature in springtime, while the EOS was notably negatively connected to summer total precipitation at the regional scale. At the pixel scale, the correlation of phenological parameters with climate variables showed strong spatial heterogeneities. This study contributes to the comprehension of the responses of vegetation phenology to climate change.

Funder

Natural Science Foundation of Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3