Effects of Environmental Factors on the Changes in MODIS NPP along DEM in Global Terrestrial Ecosystems over the Last Two Decades

Author:

Wang Zhaoqi,Wang Hong,Wang Tongfang,Wang Lina,Huang XiaotaoORCID,Zheng Kai,Liu Xiang

Abstract

Global warming has exerted widespread impacts on the terrestrial ecosystem in the past three decades. Vegetation is an important part of the terrestrial ecosystem, and its net primary productivity (NPP) is an important variable in the exchange of materials and energy in the terrestrial ecosystem. However, the effect of climate variation on the spatial pattern of zonal distribution of NPP has remained unclear over the past two decades. Therefore, we analyzed the spatiotemporal patterns and trends of MODIS NPP and environmental factors (temperature, radiation, and soil moisture) derived from three sets of reanalysis data. The moving window method and digital elevation model (DEM) were used to explore their changes along elevation gradients. Finally, we explored the effect of environmental factors on the changes in NPP and its elevation distribution patterns. Results showed that nearly 60% of the global area exhibited an increase in NPP with increasing elevation. Soil moisture has the largest uncertainty either in the spatial pattern or inter-annual variation, while temperature has the smallest uncertainty among the three environmental factors. The uncertainty of environmental factors is also reflected in its impact on the elevation distribution of NPP, and temperature is still the main dominating environmental factor. Our research results imply that the carbon sequestration capability of vegetation is becoming increasingly prominent in high-elevation regions. However, the quantitative evaluation of its carbon sink (source) functions needs further research under global warming.

Funder

the National Natural Science Foundation of China

the Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3