Abstract
Thermography has been employed broadly as a corresponding diagnostic instrument in breast cancer diagnosis. Among thermographic techniques, deep neural networks show an unequivocal potential to detect heterogeneous thermal patterns related to vasodilation in breast cancer cases. Such methods are used to extract high-dimensional thermal features, known as deep thermomics. In this study, we applied convex non-negative matrix factorization (convex NMF) to extract three predominant bases of thermal sequences. Then, the data were fed into a sparse autoencoder model, known as SPAER, to extract low-dimensional deep thermomics, which were then used to assist the clinical breast exam (CBE) in breast cancer screening. The application of convex NMF-SPAER, combining clinical and demographic covariates, yielded a result of 79.3% (73.5%, 86.9%); the highest result belonged to NMF-SPAER at 84.9% (79.3%, 88.7%). The proposed approach preserved thermal heterogeneity and led to early detection of breast cancer. It can be used as a noninvasive tool aiding CBE.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献