Author:
Cho SeongYong,Ozaki Masanori
Abstract
Blue phase (BP) liquid crystals, which self-assemble into soft three-dimensional (3D) photonic crystals, have attracted enormous research interest due to their ability to control light and potential photonic applications. BPs have long been known as optically isotropic materials, but recent works have revealed that achieving on-demand 3D orientation of BP crystals is necessary to obtain improved electro-optical performance and tailored optical characteristics. Various approaches have been proposed to precisely manipulate the crystal orientation of BPs on a substrate, through the assistance of external stimuli and directing self-assembly processes. Here, we discuss the various orientation-controlling technologies of BP crystals, with their mechanisms, advantages, drawbacks, and promising applications. This review first focuses on technologies to achieve the uniform crystal plane orientation of BPs on a substrate. Further, we review a strategy to control the azimuthal orientation of BPs along predesigned directions with a uniform crystal plane, allowing the 3D orientation to be uniquely defined on a substrate. The potential applications such as volume holograms are also discussed with their operation principle. This review provides significant advances in 3D photonic crystals and gives a huge potential for intelligent photonic devices with tailored optical characteristics.
Funder
Japan Society for the Promotion of Science
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献