Evaluation of Water–Carbon–Ecological Footprint and Its Spatial–Temporal Changes in the North China Plain

Author:

Lyu Keyi1,Tian Jin1,Zheng Jiayu1,Zhang Cuiling1,Yu Ling23

Affiliation:

1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

2. School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China

3. Key Laboratory of Earth Surface System and Human-Earth Relations of Ministry of Natural Resources of China, Shenzhen 518055, China

Abstract

The North China Plain (NCP) serves as the main grain production land in China, functioning as a critical region for ensuring China’s food security. To address the multifaceted challenges confronting food security in the NCP, the study embarked on a comprehensive analysis of the synergistic interactions between agricultural water usage, carbon emissions, and ecosystem health. By proposing footprint family indicators and using the bottom-up IPCC coefficient approach, this study quantitatively evaluates the spatial–temporal changes of water–carbon–ecological footprints in NCP from 2003 to 2020. Furthermore, a coupling coordination degree model that focuses on the coordination of water–carbon–ecological footprints is established. The findings are as follows: (1) The total water footprint in the NCP showed a striking increasing trend with an increase of 1.52 × 1011 m3, and the carbon footprint increased by 1.27 × 109 t, with significant ecological impacts. (2) The NCP’s ecological footprint exhibited an “M”-shaped trend. The land structure maintained stable with negligible changes in the proportion of ecological footprints. (3) The coupling degree between the footprints of water, carbon, and ecology in the NCP is high, revealing a noteworthy interaction effect. This research can provide data support for effective resources allocation and sustainable social–economic development, offering reasonable insights for China to formulate more scientific policies of green transition in land use and ecological civilization construction.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3