The Typical ELF/VLF Electromagnetic Wave Activities in the Upper Ionosphere Recorded by the China Seismo-Electromagnetic Satellite

Author:

Hu Yunpeng1ORCID,Zhima Zeren2,Wang Tieyan3,Lu Chao2,Yang Dehe2,Sun Xiaoying2,Tang Tian2,Cao Jinbin1

Affiliation:

1. School of Space and Environment, Beihang University, Beijing 102206, China

2. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

3. School of Earth Science, Yunnan University, Kunming 650091, China

Abstract

Driven by the scientific objective of geophysical field detection and natural hazard monitoring from space, China launched an electromagnetic satellite, which is known as the China Seismo-Electromagnetic Satellite (CSES-01), on 2 February 2018, into a circular sun-synchronous orbit with an altitude of about 507 km in the ionosphere. The CSES-01 has been in orbit for over 6 years, successfully exceeding its designed 5-year lifespan, and will continually operate as long as possible. A second identical successor (CSES-02) will be launched in December 2024 in the same orbit space. The ionosphere is a highly dynamic and complicated system, and it is necessary to comprehensively understand the electromagnetic environment and the physical effects caused by various disturbance sources. The motivation of this report is to introduce the typical electromagnetic waves, mainly in the ELF/VLF band (i.e., ~100 Hz to 25 kHz), recorded by the CSES-01 in order to call the international community for deep research on EM wave activities and geophysical sphere coupling mechanisms. The wave spectral properties and the wave propagation parameters of those typical EM wave activities in the upper ionosphere are demonstrated in this study based on wave vector analysis using the singular value decomposition (SVD) method. The analysis shows that those typical and common natural EM waves in the upper ionosphere mainly include the ionospheric hiss and proton whistlers in the ELF band (below 1 kHz), the quasiperiodic (QP) emissions, magnetospheric line radiations (MLR), the falling-tone lightning whistlers, and V-shaped streaks in the ELF/VLF band (below 20 kHz). The typical artificial EM waves in the ELF/VLF band, such as power line harmonic radiation (PLHR) and radio waves in the VLF band, are also well recorded in the ionosphere.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3