Comparative Genomics and Transcriptomics Analyses Reveal Divergent Plant Biomass-Degrading Strategies in Fungi

Author:

Li Jiajia1ORCID,Wiebenga Ad1,Lipzen Anna2,Ng Vivian2ORCID,Tejomurthula Sravanthi2,Zhang Yu2ORCID,Grigoriev Igor V.23ORCID,Peng Mao1ORCID,de Vries Ronald P.1ORCID

Affiliation:

1. Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

2. USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA

3. Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA

Abstract

Plant biomass is one of the most abundant renewable carbon sources, which holds great potential for replacing current fossil-based production of fuels and chemicals. In nature, fungi can efficiently degrade plant polysaccharides by secreting a broad range of carbohydrate-active enzymes (CAZymes), such as cellulases, hemicellulases, and pectinases. Due to the crucial role of plant biomass-degrading (PBD) CAZymes in fungal growth and related biotechnology applications, investigation of their genomic diversity and transcriptional dynamics has attracted increasing attention. In this project, we systematically compared the genome content of PBD CAZymes in six taxonomically distant species, Aspergillus niger, Aspergillus nidulans, Penicillium subrubescens, Trichoderma reesei, Phanerochaete chrysosporium, and Dichomitus squalens, as well as their transcriptome profiles during growth on nine monosaccharides. Considerable genomic variation and remarkable transcriptomic diversity of CAZymes were identified, implying the preferred carbon source of these fungi and their different methods of transcription regulation. In addition, the specific carbon utilization ability inferred from genomics and transcriptomics was compared with fungal growth profiles on corresponding sugars, to improve our understanding of the conversion process. This study enhances our understanding of genomic and transcriptomic diversity of fungal plant polysaccharide-degrading enzymes and provides new insights into designing enzyme mixtures and metabolic engineering of fungi for related industrial applications.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3