Abstract
There are many characterizations of linear operators from various matrix spaces into themselves which preserve term rank. In this research, we characterize the linear maps which preserve any two term ranks between different matrix spaces over anti-negative semirings, which extends the previous results on characterizations of linear operators from some matrix spaces into themselves. That is, a linear map T from p × q matrix spaces into m × n matrix spaces preserves any two term ranks if and only if T preserves all term ranks if and only if T is a ( P , Q , B )-block map.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)