Dynamic Modelling of Interactions between Microglia and Endogenous Neural Stem Cells in the Brain during a Stroke

Author:

Alqarni Awatif Jahman,Rambely Azmin ShamORCID,Hashim Ishak

Abstract

In this paper, we study the interactions between microglia and neural stem cells and the impact of these interactions on the brain cells during a stroke. Microglia cells, neural stem cells, the damage on brain cells from the stroke and the impacts these interactions have on living brain cells are considered in the design of mathematical models. The models consist of ordinary differential equations describing the effects of microglia on brain cells and the interactions between microglia and neural stem cells in the case of a stroke. Variables considered include: resident microglia, classically activated microglia, alternatively activated microglia, neural stem cells, tissue damage on cells in the brain, and the impacts these interactions have on living brain cells. The first model describes what happens in the brain at the stroke onset during the first three days without the generation of any neural stem cells. The second model studies the dynamic effect of microglia and neural stem cells on the brain cells following the generation of neural stem cells and potential recovery after this stage. We look at the stability and the instability of the models which are both studied analytically. The results show that the immune cells can help the brain by cleaning dead cells and stimulating the generation of neural stem cells; however, excessive activation may cause damage and affect the injured region. Microglia have beneficial and harmful functions after ischemic stroke. The microglia stimulate neural stem cells to generate new cells that substitute dead cells during the recovery stage but sometimes the endogenous neural stem cells are highly sensitive to inflammatory in the brain.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3