Study on Precipitation Kinetics of Calcium Pyro-Vanadate and Thermodynamics of Vanadium Water System

Author:

Liu Hangkai,Yang Qiaowen

Abstract

Selective catalytic reduction (SCR) is a technology widely used in large coal-fired units to remove nitrogen oxides from flue gas, but it also generates a large number of waste catalysts every year. At present, the recovery of V from discarded SCR catalysts has good application prospects and environmental significance. In this paper, the kinetics and thermodynamics of vanadium precipitation process are described with the vanadium-containing liquid of waste denitration catalyst recovered by alkali leaching as raw material and CaCl2 as precipitant in order to further explore the mechanism of vanadium precipitation. The kinetics study showed that the crystallization process of calcium pyrovanadate can be well-described by Avrami kinetic model when the precipitation time is 95–130 min, and the vanadium precipitation temperature is 60–80 °C. After that, the Arrhenius equation was used to analyze the fitted kinetic data, and the apparent activation energy Ea of vanadium precipitation reaction was calculated to be 98.196 kJ/mol, and the pre exponential factor A = 8.59 × 1039 min−1. Thermodynamic study showed that when the pH of the vanadium water system is low, the +5 valence vanadium in the solution mainly exists in the form of VO2+ cation. When the pH is between 0–1, the solubility of vanadium reaches the minimum and then increases the solution pH again, and various polymerized anions are formed in the vanadium water system. When the temperature is 25 °C, the activity of vanadium in vanadium-containing solution is 10−1, the pH of solution is 8–12, and the existence form of +5 valence vanadium in solution is mainly HV2O73−. By analyzing the existing forms of V with different activities in a vanadium water system at 25 °C, it can be seen that with the decrease of V activity in liquid, the dominant region of polymerized vanadium-containing species in the potential pH diagram will disappear, indicating that vanadium mainly exists in the form of mononuclear ions in low-concentration vanadium-containing solutions, which is not conducive to precipitation. Therefore, in the process of precipitation of vanadium in solution, the concentration of V should be increased as much as possible.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference22 articles.

1. Effect of vanadium on alloying and its applications;Xie;Spec. Steel Technol.,2015

2. A literature review on leaching and recovery of vanadium;Hao;J. Environ. Chem. Eng.,2019

3. Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst;Taniguchi;Hydrometallurgy,1985

4. Recovery of vanadium from leach solutions of vanadium slag using solvent extraction with N235;Zhi;Hydrometallurgy,2020

5. Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching;Xiang;Trans. Nonferrous Met. Soc. China,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3