Methodology for Calculating the Damaged Surface and Its Relationship with Power Loss in Photovoltaic Modules by Electroluminescence Inspection for Corrective Maintenance

Author:

Saborido-Barba Nieves1,García-López Carmen1ORCID,Clavijo-Blanco José Antonio1ORCID,Jiménez-Castañeda Rafael1,Álvarez-Tey Germán1ORCID

Affiliation:

1. Departamento de Ingeniería Eléctrica, Universidad de Cádiz, Avenida de la Universidad de Cádiz 10, 11519 Puerto Real, Cádiz, Spain

Abstract

Photovoltaic panels are exposed to various external factors that can cause damage, with the formation of cracks in the photovoltaic cells being one of the most recurrent issues affecting their production capacity. Electroluminescence (EL) tests are employed to detect these cracks. In this study, a methodology developed according to the IEC TS 60904-13 standard is presented, allowing for the calculation of the percentage of type C cracks in a PV panel and subsequently estimating the associated power loss. To validate the methodology, it was applied to a polycrystalline silicon module subjected to incremental damage through multiple impacts on its rear surface. After each impact, electroluminescence images and I-V curves were obtained and used to verify power loss estimates. More accurate estimates were achieved by assessing cracks at the PV cell level rather than by substring or considering the entire module. In this context, cell-level analysis becomes indispensable, as the most damaged cell significantly influences the performance of the photovoltaic model. Subsequently, the developed methodology was applied to evaluate the conditions of four photovoltaic panels that had been in operation, exemplifying its application in maintenance tasks. The results assisted in decision making regarding whether to replace or continue using the panels.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3