Evaluation of External Light Shelf Performance in Relation to the Ceiling Types Used in Indoor Spaces

Author:

Jung Su-yeon1,Lee Min-Goo2,Lee Heangwoo1ORCID

Affiliation:

1. College of Design, Sangmyung University, Cheonan-si 31066, Chungcheongnam-do, Republic of Korea

2. Korea Electronics Technology Institute, Seongnam-si 13509, Gyeonggi-do, Republic of Korea

Abstract

A light shelf is a type of natural daylight system that brings natural light from the outside into an indoor space through a reflector and a ceiling surface. The introduction of light shelves has led to studies evaluating their efficiency. However, past studies on light shelves did not consider the diversity of ceiling types when evaluating their performance. Therefore, this study derives fundamental data involving external light shelf designs by evaluating light shelf performance based on the ceiling type present using a light environment simulation method. This study analyzed the indoor illuminance distribution with Radiance to evaluate the performance according to light shelves and indoor space types. The results derived from this study are as follows: (1) In the case of a flat ceiling, the performance of an external light shelf can be improved by increasing its angle and width. However, adjusting the external light shelf angle to 30° during the middle of the season and 20° in winter is ineffective because natural light is not reflected by the ceiling surface. (2) The performance of a light shelf can be improved by increasing the slope and curvature of the ceiling types specified in this study. However, setting the light shelf angle to 30° during the middle season and to 30° and 20° in winter, when external natural light entering the indoor space is not reflected by the ceiling surface, is ineffective due to the low levels of daylight performance, regardless of the type of space. (3) To increase uniformity levels in gable ceilings and curved ceilings, it is advantageous to increase the number of reflections and diffusion areas on the ceiling’s surface due to the uniqueness of these ceiling shapes. Furthermore, the optimal external light shelf angle for these ceiling types differs from that of other types. (4) Regarding the appropriate external light shelf size according to a particular ceiling type, installing an angle-controllable external light shelf with a width of 1.2 m can improve daylight performance.

Funder

National Research Foundation of Korea

Energy Demand Management Core Technology Development of the Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference39 articles.

1. Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis;Holmberg;Energy,2007

2. Carbon emission of global construction sector;Huang;Renew. Sustain. Energy Rev.,2018

3. Total CO2 emissions associated with buildings in 266 Chinese cities: Characteristics and influencing factors;Wang;Resour. Conserv. Recycl.,2023

4. United Nations Environment Programme (2023, September 27). 2020 Global Status Report for Buildings and Construction. Available online: https://globalabc.org/news/globalabc-releases-2020-global-status-report-buildings-and-construction.

5. Optimisation of daylight admission based on modifications of light shelf design parameters;Mangkuto;J. Build Eng.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3