State-of-Charge Trajectory Planning for Low-Altitude Solar-Powered Convertible UAV by Driven Modes

Author:

Cao Xiao1,Liu Li1

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

The conversion efficiency of solar energy and the capacity of energy storage batteries limit the development of low-altitude solar-powered aircrafts in the face of challenging meteorological phenomena in the lower atmosphere. In this paper, the energy planning problem of solar-power convertible unmanned aerial vehicles (SCUAVs) is studied, and a degressive state-of-charge (SOC) trajectory planning method with energy management strategy (EMS) is proposed. The SOC trajectory planning strategy is divided into four stages driven by three modes, which achieves the energy cycle of SCUAV’s long-endurance cruise and multiple hovers without the need to fully charge the battery SOC. The EMS is applied to control the output of solar cell/battery and power distribution for each stage according to three modes. A prediction model based on wavelet transform (WT), long short-term memory (LSTM) networks and autoregressive integrated moving average (ARIMA) is proposed for the weather forecast in the low altitude, where solar irradiance is used for the prediction of solar input power, and the wind and its inflow direction take into account the multi-mode power prediction. Numerical and simulation results indicate that the effectiveness of the proposed SOC trajectory planning method has a positive impact on low-altitude solar-powered aircrafts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3