Protocol for Evaluating the Microbial Inactivation of Commercial UV Devices on Plastic Surfaces

Author:

Haley Olivia C.ORCID,Zhao Yeqi,Bhullar Manreet

Abstract

With the plethora of commercially available UV-C devices exhibiting different intensity and lifespans, it is critical to consumer safety that companies verify and clearly communicate the efficacy of their devices as per the intended use. The purpose of this study was to define a low-cost protocol for investigating the antimicrobial efficacy of commercial UV devices for industry use. The tested devices included: a wall-mounted unit (Device A), a troffer unit (Device B), and an induction lamp unit (Device C). The devices were installed within an enclosed tower to prevent the transmission of UV-C radiation outside of the testing area. The procedure details determining the devices′ antimicrobial efficacy using plastic coupons inoculated with Escherichia coli or Staphylococcus aureus. The protocol includes suggested time–distance treatments according to the potential application of each device type and reports the results as log CFU/mL reduction or percent reduction.

Funder

SARIN Energy Solutions

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3