Microfluidically Frequency-Reconfigurable Quasi-Yagi Dipole Antenna

Author:

Shah Syed,Lim SungjoonORCID

Abstract

In this paper, a frequency reconfigurable quasi-Yagi dipole antenna is proposed by leveraging the properties of microfluidic technology. The proposed antenna comprises a metal-printed driven dipole element and three directors. To tune resonant frequencies, microfluidic channels are integrated into the driven element. To maintain a high gain for all the tuned frequencies, microfluidic channels are also integrated into the directors. Therefore, the length of the driven-element as well as directors can be controlled by injecting liquid metal in the microfluidic channels. The proposed antenna has the capability of tuning the frequency by varying the length of the metal-filled channels, while maintaining a high gain for all the tuned frequencies. The proposed antenna’s performance is experimentally demonstrated after fabrication. The injected amount of liquid metal into the microfluidic channels is controlled using programmable pneumatic micropumps. The prototype exhibits continuous tuning of the resonant frequencies from 1.8 GHz to 2.4 GHz; the measured peak gain of the proposed antenna is varied in the range of 8 dBi to 8.5 dBi. Therefore, continuous tuning with high gain is successfully demonstrated using liquid-metal-filled microfluidic channels.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3