Optimization of the Pressure Resistance Welding Process for Nuclear Fuel Cladding Coupling Experimental and Numerical Approaches

Author:

Mabrouki Mohamed1,Gonçalves Diogo1,Pascal Serge1,Bertheau Denis2,Henaff Gilbert2ORCID,Poulon-Quintin Angéline3

Affiliation:

1. Laboratoire de Technologies d’Assemblages (LTA), Département de Recherche sur les Matériaux et la Physico-Chimie Pour les Énergies Bas Carbone (DRMP), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université de Paris Saclay, 91191 Gif-Sur-Yvette, France

2. Institut Pprime UPR 3346, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (ISAE-ENSMA), Centre National de la Recherche Scientifique (CNRS), Université de Poitiers, 89073 CEDEX 9, 86000 Poitiers, France

3. Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux INP, 33600 Pessac, France

Abstract

An approach coupling experimental tests and numerical simulation of the pressure resistance welding (PRW) process is proposed for optimizing fuel cladding welds for the new generation of nuclear reactors. Several experimental welds were prepared by varying the dissipated energy, which accounts for the effect of electric current and welding time applied during the PRW process. A working zone, a function of both applied dissipated weld energy and plug-displacement, was then identified on the basis of the microscopy observations of the weld defects. In addition, the numerical approach, based on a 2D axisymmetric multi-physics finite element model, was developed to simulate the PRW process in a plug-tube configuration. The proposed model accounted for interactions between the electrical, thermal and mechanical phenomena and the electro-thermo-mechanical contact between the pieces and electrodes. Numerical simulations were first validated by comparison to experimental measurements, notably by comparing the plug-displacement and the size and position of the heat-affected zone (HAZ). They were then used to assess the effect of the applied parameters on the maximum temperature and cumulated plastic strain reached during welding and the effect of the welding force on the quality of the weld. According to the numerical computations, the maximum temperature reached in the weld remains well below the melting temperature. Changing the welding force implies also modifying the applied energy in order to maintain the quality of the welds. Applied to different plug and clad geometries, the proposed model was shown to be useful for optimizing the joint plane for such a welding configuration.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference34 articles.

1. Development and characterisation of a new ODS ferritic steel for fusion reactor application;Oksiuta;J. Nucl. Mater.,2009

2. Perspective of ODS alloys application in nuclear environments;Ukai;J. Nucl. Mater.,2002

3. CEA developments of new ferritic ODS alloys for nuclear applications;Bechade;J. Nucl. Mater.,2009

4. High-temperature strength characterization of advanced 9Cr-ODS ferritic steels;Ukai;Mater. Sci. Eng. A,2009

5. Preparation and properties of oxide dispersion-strengthened ferritic alloys;Huet;Met. Powder Rep.,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3