Flexible Ion Adsorption Electrodes Using Natural Zeolite and Rice Husk Charcoal for FEM-EK Treatment

Author:

Kumagai Ayaka1,Kabir Mahmudul1ORCID,Okuda Shogo1,Komachi Hitori1,Obara Naoko1,Sato Yusuke2,Saito Takahiro2,Sato Michio3,Tomioka Masahiro1,Kumagai Seiji1ORCID,Yoshimura Noboru1

Affiliation:

1. Graduate School of Engineering Science, Department of Mathematical Science and Electrical-Electronic-Computer Engineering, Tegata Campus, Akita University, Akita 010-8502, Japan

2. Sanwa Tekki Corporation, Tokyo 140-8669, Japan

3. Cluster of Science and Technology, Faculty of Symbiotic Systems Science, Energy Technology Course, Fukushima University, Fukushima 960-1296, Japan

Abstract

The Fukushima Daiichi nuclear power plant accident happened after the devastating earthquake in the Pacific coastal area of Japan on 11 March 2011. After the accident, radioactive materials spread out over a wide area in Japan. Radioactive materials were retained on soil surfaces, causing environmental problems. Among the radioactive materials, cesium (137Cs) has a long half-life of 30.2 years, and it remains near the surface soil; therefore, it is necessary to remove soil contaminated by 137Cs. The contaminated soil layer of inhabited areas in Fukushima was already removed before April 2020. However, the remediation method of Cs with other radioactive materials needs further study, as the large quantity of contaminated soil is not easy to preserve. Electrokinetic (EK) treatment is one of the soil remediation technologies that utilizes EK phenomena at the interface between contaminated soils by transferring ions from the soil. We have developed a new type of EK method in which a cathode is placed on the surface of the soil and an anode is place inside the soil. By applying DC voltage in between the electrodes, the Cs ions can be removed from the contaminated soil. The removed Cs ions are gathered near to the cathode, and if the cathode can adsorb the Cs ions, then only the cathode needs to be preserved, solving the problem of storing a large amount of soil. We have been working to prepare a new type of cathode that can be effective in adsorbing Cs ions and at the same time easier to store and handle. We used natural zeolite and rice husk charcoal (kuntan) to prepare this electrode, which showed good potential for adsorbing Cs ions. The electrode showed flexibility, which is helpful for storing it in the same way as pasture rolls. However, the experiments were conducted in the laboratory with non-radioactive Cs; field experiments and observations are needed for practical applications of this method, as well as the new electrodes.

Funder

Grant-in-Aid for Scientific Research

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3