Modifying Hata-Davidson Propagation Model for Remote Sensing in Complex Environments Using a Multifactional Drone

Author:

Almalki Faris A.ORCID,Soufiene Ben OthmanORCID

Abstract

The coupling of drones and IoT is a major topics in academia and industry since it significantly contributes towards making human life safer and smarter. Using drones is seen as a robust approach for mobile remote sensing operations, such as search-and-rescue missions, due to their speed and efficiency, which could seriously affect victims’ chances of survival. This paper aims to modify the Hata-Davidson empirical propagation model based on RF drone measurement to conduct searches for missing persons in complex environments with rugged areas after manmade or natural disasters. A drone was coupled with a thermal FLIR lepton camera, a microcontroller, GPS, and weather station sensors. The proposed modified model utilized the least squares tuning algorithm to fit the data measured from the drone communication system. This enhanced the RF connectivity between the drone and the local authority, as well as leading to increased coverage footprint and, thus, the performance of wider search-and-rescue operations in a timely fashion using strip search patterns. The development of the proposed model considered both software simulation and hardware implementations. Since empirical propagation models are the most adjustable models, this study concludes with a comparison between the modified Hata-Davidson algorithm against other well-known modified empirical models for validation using root mean square error (RMSE). The experimental results show that the modified Hata-Davidson model outperforms the other empirical models, which in turn helps to identify missing persons and their locations using thermal imaging and a GPS sensor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3