Accuracy Assessment of Low-Cost Lidar Scanners: An Analysis of the Velodyne HDL–32E and Livox Mid–40’s Temporal Stability

Author:

Kelly CarterORCID,Wilkinson Benjamin,Abd-Elrahman AmrORCID,Cordero Orlando,Lassiter H. AndrewORCID

Abstract

Identifying and mitigating sources of measurement error is a critical task in geomatics research and the geospatial industry as a whole. In pursuit of such error, accuracy assessments of lidar data have revealed a range bias in low-cost scanners. This phenomenon is a temporally correlated instability in the lidar scanner where the measured distance between target and sensor changes over time while both are held stationary. This research presents an assessment of two low-cost lidar scanners, the Velodyne® HDL–32E and Livox® Mid–40, in which their temporal stability is analyzed and methods to mitigate systematic error are implemented. By immobilizing each scanner as it observes a stationary target surface over the course of multiple hours, trends in scanner precision are identified. Scanner accuracy is then determined using a terrestrial lidar scanner, the Riegl® VZ-400, to observe both subject scanner and target, and extracting the distances between scanner origin and observed surface. Patterns identified in each scanner’s distance measurements indicate temporal autocorrelation, and, by exploiting the high linear correlation between scanner internal temperature and measured distance in the HDL–32E, it is possible to mitigate the resulting error. Application of the proposed solution lowers the Velodyne® scanner’s measurement RMSE by over 60%, providing levels of measurement accuracy comparable to more expensive lidar systems.

Funder

National Oceanic and Atmospheric Administration

USDA National Institute of Food and Agriculture, McIntire Stennis project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Slam Lidar - An Accuracy Assessment and Drift Anaylsis of the Leica BLK2GO;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Optimization of Land Area Mapping and Volume Calculations using Drone Lidar Livox Mid-40 Data with the Downsampling Method;BIO Web of Conferences;2024

3. A Discussion of Key Aspects and Trends in Self Driving Vehicle Technology;Journal of Machine and Computing;2023-10-05

4. Joint Camera and LiDAR Risk Analysis;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

5. Autonomous Mobile Mapping Robots: Key Software Components;Autonomous Mobile Mapping Robots;2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3