Abstract
While the international nEDM collaboration at the Paul Scherrer Institut (PSI) took data in 2017 that covered a considerable fraction of the parameter space of claimed potential signals of hypothetical neutron (n) to mirror-neutron (n′) transitions, it could not test all claimed signal regions at various mirror magnetic fields. Therefore, a new study of n−n′ oscillations using stored ultracold neutrons (UCNs) is underway at PSI, considerably expanding the reach in parameter space of mirror magnetic fields (B′) and oscillation time constants (τnn′). The new apparatus is designed to test for the anomalous loss of stored ultracold neutrons as a function of an applied magnetic field. The experiment is distinguished from its predecessors by its very large storage vessel (1.47 m3), enhancing its statistical sensitivity. In a test experiment in 2020 we have demonstrated the capabilities of our apparatus. However, the full analysis of our recent data is still pending. Based on already demonstrated performance, we will reach sensitivity to oscillation times τnn′/cos(β) well above a hundred seconds, with β being the angle between B′ and the applied magnetic field B. The scan of B will allow the finding or the comprehensive exclusion of potential signals reported in the analysis of previous experiments and suggested to be consistent with neutron to mirror-neutron oscillations.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference84 articles.
1. Question of Parity Conservation in Weak Interactions
2. Pomeranchuk, On the possibility of experimental observation of mirror particles;Yu;Sov. J. Nucl. Phys.,1966
3. A model with fundamental improper spacetime symmetries
4. MIRROR WORLD AND ITS COSMOLOGICAL CONSEQUENCES
5. Through the looking-glass: Alice’s adventures in mirror world;Berezhiani,2005
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献