Synthesis, Molecular and Supramolecular Structure Aspects, and Antimicrobial Activity of the Centrosymmetric [Ag(5-Nitroquinoline)2]ClO4 Complex

Author:

Altowyan Mezna SalehORCID,Al-Shaalan Nora Hamad,Alkharboush Aminah A.,Barakat AssemORCID,Soliman Saied M.ORCID

Abstract

The new homoleptic [Ag(5-nitroquinoline)2]ClO4 centrosymmetric complex was synthesized and its structure aspects were investigated. It crystallized in the monoclinic space group C2/c with a = 10.0279(2) Å, b = 13.2295(3) Å, c = 14.7552(3) Å and β = 102.1050(10)° while V = 1913.96(7) Å3 and half molecule as asymmetric formula. The Ag(I) is coordinated with two symmetrically related 5-nitroquinoline ligand units via the heterocyclic nitrogen atom with Ag-N distance of 2.146(6) Å and N1-Ag-N1 angle of 173.0(3)°. The two coordinated 5-nitroquinoline have anti configuration to one another and the perchlorate anion is set freely uncoordinated. The only Ag…O interactions are Ag1…O2 (3.110 Å) and Ag1…O1 (3.189 Å) which occur between the Ag(I) in one complex unit and the O-atoms from the NO2 groups in the neighbouring complex units. Hence, Ag(I) has coordination number 2 and its coordination geometry is slightly bent. Hirshfeld analysis indicated that the O…H (51.1%), C…H (11.8%), H…H (10.8%) and C…C (8.9%) contacts are the most common. Exclusively, the O…H, C…O, N…O, O…O and Ag…O contacts are the only shorter contacts than the vdWs radii sum of the interacting atoms. The studied Ag(I) complex showed good antimicrobial activity. It has comparable antibacterial activity against P. vulgaris (MIC = 9.7 μg/mL) and S. aureus (39.1 μg/mL) to Gentamycin (4.8 and 9.7 μg/mL, respectively) while better antifungal activity against A. fumigatus (MIC = 39.1 μg/mL) than Ketoconazole (156.2 μg/mL).

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3