The Vibroacoustic Characteristics Analysis of Transformer Core Faults Based on Multi-Physical Field Coupling

Author:

Yao Degui,Li Longfei,Zhang Songyang,Zhang Dianhai,Chen Dezhi

Abstract

Power transformers play an important role in the safe and reliable operation of the whole power grid. Once a fault occurs, it will endanger the normal operation of the transformer, and even result in power grid accidents. Accurate and practical methods of transformer fault monitoring and type identification have attracted extensive attention in the field of electrical engineering. However, it is difficult to obtain a large number of measurement data for different fault types on a large power transformer. The vibroacoustic characteristics of transformer faults have significant asymmetry. For the power transformer in service, it is complex and uneconomic to obtain the vibroacoustic signals under different fault conditions. To handle this problem, this paper proposes simulation methods of several common transformer core faults, based on multi-physical field coupling, and then analyzes the vibroacoustic signals generated by the operating transformer. Finally, it verifies the results of acoustic and vibration signals under several faults, through physical experiments. The results show that the transformer fault simulation method is reasonable and accurate. Furthermore, a change in the transformer core state will cause a change in the transformer vibroacoustic characteristics, and different types of core faults can be distinguished by the analysis of vibroacoustic characteristics.

Funder

Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3