LPI Radar Signal Recognition Based on Dual-Channel CNN and Feature Fusion

Author:

Quan DayingORCID,Tang Zeyu,Wang Xiaofeng,Zhai Wenchao,Qu Chongxiao

Abstract

The accuracy of low probability of intercept (LPI) radar waveform recognition is an important and challenging problem in electronic warfare. Aiming at the problem of the difficulty in feature extraction and the low recognition rates of the LPI radar signal under a low signal-to-noise ratio, and inspired by the symmetry theory, we propose a new approach for the LPI radar signal recognition method based on a dual-channel convolutional neural network (CNN) and feature fusion. Our new approach contains three main modules: the preprocessing module that converts the LPI radar waveforms into two-dimensional time-frequency images using the Choi–Williams distribution (CWD) transformation and performs image binarization, the feature extraction module that extracts different features obtained from the images, and the recognition module that utilizes a multi-layer perceptron (MLP) network to fuse these features and distinguish the type of LPI radar signals. In the feature extraction module, a two-channel CNN model is proposed that extracts Histogram of Oriented Gradients (HOG) features and deep features from time-frequency images, respectively. Finally, the recognition module recognizes the radar signals using a Softmax classifier based on the fused features from two channels. The experimental results from 12 types of LPI radar signals prove the superiority and robustness of the proposed model. Its overall recognition rate reaches 97% when the signal-to-noise ratio is −6 dB.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3