Mapping of Meteorological Observations over the Island of Ireland to Enhance the Understanding and Prediction of Rain Erosion in Wind Turbine Blades

Author:

Nash James W. K.ORCID,Zekos IasonasORCID,Stack Margaret M.ORCID

Abstract

Leading edge erosion is becoming increasingly important as wind turbine size and rainfall are predicted to increase. Understanding environmental conditions is key for laboratory testing, maintenance schedules and lifetime estimations to be improved, which in turn could reduce costs. This paper uses weather data in conjunction with a rain texture model and wind turbine RPM curve to predict and characterise rain erosion conditions across Ireland during rainfall events in terms of droplet size, temperature, humidity and chemical composition, as well as the relative erosivity, in terms of number of annual impacts and kinetic energy, as well as seasonal variations in these properties. Using a linear regression, the total annual kinetic energy, mean temperature and the mean humidity during impact are mapped geospatially. The results indicate that the west coast of Ireland and elevated regions are more erosive with higher kinetic energy. During rain events, northern regions tend to have lower temperatures and lower humidities and mountainous regions have lower temperatures and higher humidities. Irish rain has high levels of sea salt, and in recent years, only a slightly acidic pH. Most erosion likely occurs during winters with frequent rain infused with salt due to increased winds. After this analysis, it is concluded that Ireland’s largest wind park (Galway) is placed in a moderate-highly erosive environment and that RET protocols should be revisited.

Funder

Interreg

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3